Jensen不等式

如果$$f: \omega->R$$是一个函数,则对于任何$$[{ x_i \in \Omega }]^{n}{i=1}$$以及凸组合$$\sum{i=1}^{n} w_ix_i$$都有

$$\sum_{i=1}^{n} w_if(x_i)>=f(\sum_{i=1}^{n} w_ix_i)$$


拉格朗日对偶函数

$$L(x,\lambda ,v) = f_0(x)+\sum_{i=1}^{m}\lambda if_i(x)+\sum{i=1}^{P}v_ih_i(x)$$

根据拉个朗日函数,我们定义i拉格朗日对偶函数$$g(\lambda,v):R^{m+p}->R$$

$$x = y$$$$x = g(\lambda,v)=inf_{x \in D} L(x, \lambda, v)=inf_{x \in D} f_0(x)+\sum_{i=1}^{m}\lambda if_i(x)+\sum{i=1}^{P}v_ih_i(x)$$


对偶问题:

最大化$$g(\lambda,v)$$

不等式条件:$$\lambda_i>=0$$


Copyright 2017-2019, All Rights Reserved.
粤ICP备18085907号 深圳市磐创网络科技有限公司

Documentation built with MkDocs.